There are four measurement scales (or types of data): nominal, ordinal, interval and ratio. These are simply ways to categorize different types of variables. This topic is usually discussed in the context of academic teaching and less often in the “real world.” If you are brushing up on this concept for a statistics test, thank a psychologist researcher named Stanley Stevens for coming up with these terms. These four measurement scales (nominal, ordinal, interval, and ratio) are best understood with example, as you’ll see below.

**Nominal**

Let’s start with the easiest one to understand. Nominal scales are used for labeling variables, without any quantitative value. “Nominal” scales could simply be called “labels.” Here are some examples, below. Notice that all of these scales are mutually exclusive (no overlap) and none of them have any numerical significance. A good way to remember all of this is that “nominal” sounds a lot like “name” and nominal scales are kind of like “names” or labels.

*Note*: a sub-type of nominal scale with only two categories (e.g. male/female) is called “**dichotomous**.” If you are a student, you can use that to impress your teacher.

Continue reading about types of data and measurement scales: nominal, ordinal, interval, and ratio…

**Ordinal
**With ordinal scales, it is the order of the values is what’s important and significant, but the differences between each one is not really known. Take a look at the example below. In each case, we know that a #4 is better than a #3 or #2, but we don’t know–and cannot quantify–how

*much*better it is. For example, is the difference between “OK” and “Unhappy” the same as the difference between “Very Happy” and “Happy?” We can’t say.

Ordinal scales are typically measures of non-numeric concepts like satisfaction, happiness, discomfort, etc.

“Ordinal” is easy to remember because is sounds like “order” and that’s the key to remember with “ordinal scales”–it is the *order* that matters, but that’s all you really get from these.

*Advanced note*: The best way to determine *central tendency* on a set of ordinal data is to use the mode or median; the mean cannot be defined from an ordinal set.

**Interval
**Interval scales are numeric scales in which we know not only the order, but also the exact differences between the values. The classic example of an interval scale is Celsius temperature because the difference between each value is the same. For example, the difference between 60 and 50 degrees is a measurable 10 degrees, as is the difference between 80 and 70 degrees. Time is another good example of an interval scale in which the increments are known, consistent, and measurable.

Interval scales are nice because the realm of statistical analysis on these data sets opens up. For example, *central tendency* can be measured by mode, median, or mean; standard deviation can also be calculated.

Like the others, you can remember the key points of an “interval scale” pretty easily. “Interval” itself means “space in between,” which is the important thing to remember–interval scales not only tell us about order, but also about the value between each item.

Here’s the problem with interval scales: they don’t have a “true zero.” For example, there is no such thing as “no temperature.” Without a true zero, it is impossible to compute ratios. With interval data, we can add and subtract, but cannot multiply or divide. Confused? Ok, consider this: 10 degrees + 10 degrees = 20 degrees. No problem there. 20 degrees is not twice as hot as 10 degrees, however, because there is no such thing as “no temperature” when it comes to the Celsius scale. I hope that makes sense. Bottom line, interval scales are great, but we cannot calculate ratios, which brings us to our last measurement scale…

**Ratio**

Ratio scales are the ultimate nirvana when it comes to measurement scales because they tell us about the order, they tell us the exact value between units, AND they also have an absolute zero–which allows for a wide range of both descriptive and inferential statistics to be applied. At the risk of repeating myself, everything above about interval data applies to ratio scales + ratio scales have a clear definition of zero. Good examples of ratio variables include height and weight.

Ratio scales provide a wealth of possibilities when it comes to statistical analysis. These variables can be meaningfully added, subtracted, multiplied, divided (ratios). Central tendency can be measured by mode, median, or mean; measures of dispersion, such as standard deviation and coefficient of variation can also be calculated from ratio scales.

**Summary**

**nominal**variables are used to “

*name*,” or label a series of values.

**Ordinal**scales provide good information about the

*order*of choices, such as in a customer satisfaction survey.

**Interval**scales give us the order of values + the ability to quantify

*the difference between each one*. Finally,

**Ratio**scales give us the ultimate–order, interval values, plus the

*ability to calculate ratios*since a “true zero” can be defined.

That’s it! I hope this explanation is clear and that you know understand the four types of data measurement scales: nominal, ordinal, interval, and ratio!

Time is in fact a ratio scale.

20 seconds is twice as long as 10 seconds. You can multiply and divide time. The absolute 0 doesn\’t have to be attainable for the scale to be ratio. To borrow from your example: there is no such thing as \”no height\”, yet you\’ve classified height as ratio.

Thanks for the excellent comment, LJ. I have edited the article based on your comment. Time is a tricky one. This article from UC Davis explains how time, depending on how it is presented, can be categorized as any of these types of scales. http://psychology.ucdavis.edu/sommerb/sommerdemo/scaling/levels.htm

Thanks for this informative text. Now I became clearer between these four terms.

Thanks for that brilliantly written info. Really helped clear all of my confusion regarding scales, especially the difference between interval and ratio. Thanks again.

Thanks this helped me a lot!

Thank you so so much. Im doing a BA in Psychotherapy and one of our modules is Psychology so we only touch on it in one class so Im not au fait at all. You have explained to me in 10 minutes what I could not understand from our lecturer in a 2 hour long lecture. Feel more confident about the exam for this module next Monday!

Thanks so much,since now i understand those scales especial to differentiate them.

Very formative article, thanks to author for such a great job!

Brilliant article though, however I had one doubt regarding oil prices in exact USD figure over a monthly period. On which scale should these values lie. Appreciate your inputs.

Difficult things made really simple and easy to understand.

very helpful

Thank you very much, you are a good teacher.

much appreciated author i got informed a lot in these scales

Tnx a lot…..

THANKS. I NOW HAVE A BETTER UNDERSTANDING BETWEEN THE FOUR MEASURES

very easy to understand thank you

Excellent & Simple explanation with examples for clarity.

Excellent & Simple explanation.

Excellent & Simple explanation

very nice tnx

I am very impressed with your detailed and easy explanation.. wish u get reward for this

This information came in handy. thank you so much.

well explained

Celsius is not really a good example for a true zero, as people experience 0 degrees Celsius quite often. A better example would be 0 degrees Kelvin. Semantics, I know, but it\’s easier to understand if phrased in K.

Great explanations otherwise.

Thank you sir. it is very helpful me for broden my knowledge.

This explanations kinda help. I wish can get more verbal explanations.

Your explanations were very explicit and illustrative. My knowledge has greatly improved on the 4 levels of measurements

I truly enjoyed reading thru this paper. Simple language, simple and to the point explanations. I appreciate you for your effort to share this with persons like me, finding hard to comprehend statistics. Thanks a lot

Thanks … It helped me a lot to understand the measurement scales.

Thanks alot

Nice work…helped me in my assingment

quiz of basic statistics

are the following nominal, ordinal, interval, or ratio data??,Explain your answers

1)Temperature measuring on a kelvin scale.

2)military ranks

3)HIV/AIDS status

4)Coli form bacteria counts in drinking water supplies

I am doing a make up research in clinic no show rates. Taking the amount of patients scheduled on a given day, and the amount of patients that actually show. What type is this?